Problem:
f(n__f(n__a())) -> f(n__g(n__f(n__a())))
f(X) -> n__f(X)
a() -> n__a()
g(X) -> n__g(X)
activate(n__f(X)) -> f(X)
activate(n__a()) -> a()
activate(n__g(X)) -> g(activate(X))
activate(X) -> X
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {7,6,5,4}
transitions:
g1(55) -> 56*
activate1(62) -> 63*
activate1(64) -> 65*
activate1(54) -> 55*
a1() -> 53*
f1(40) -> 41*
f1(10) -> 11*
f1(46) -> 47*
f1(48) -> 49*
n__g1(30) -> 31*
n__g1(32) -> 33*
n__g1(9) -> 10*
n__g1(38) -> 39*
n__a1() -> 8*
n__f1(20) -> 21*
n__f1(26) -> 27*
n__f1(18) -> 19*
n__f1(8) -> 9*
n__g2(86) -> 87*
f0(2) -> 4*
f0(1) -> 4*
f0(3) -> 4*
n__a2() -> 84*
n__f0(2) -> 1*
n__f0(1) -> 1*
n__f0(3) -> 1*
n__f2(82) -> 83*
n__f2(74) -> 75*
n__f2(76) -> 77*
n__f2(68) -> 69*
n__a0() -> 2*
n__g0(2) -> 3*
n__g0(1) -> 3*
n__g0(3) -> 3*
a0() -> 5*
g0(2) -> 6*
g0(1) -> 6*
g0(3) -> 6*
activate0(2) -> 7*
activate0(1) -> 7*
activate0(3) -> 7*
1 -> 7,62,46,32,20
2 -> 7,54,40,38,26
3 -> 7,64,48,30,18
8 -> 5*
10 -> 68*
11 -> 47,7,4
19 -> 4*
21 -> 4*
27 -> 4*
31 -> 6*
33 -> 6*
39 -> 6*
40 -> 82*
41 -> 63,55,7
46 -> 74*
47 -> 63,55,7
48 -> 76*
49 -> 63,55,7
53 -> 55,7
54 -> 55*
55 -> 86*
56 -> 65,55,7
62 -> 63,55
63 -> 55*
64 -> 65*
65 -> 55*
69 -> 11*
75 -> 47*
77 -> 49,7
83 -> 41,7
84 -> 53,7
87 -> 56,7
problem:
Qed